
Parallel and Large-scale Simulation Enhancements to CGNS

M. Scot Breitenfeld, The HDF Group, brtnfld@hdfgroup.org

September 23, 2015

1 Overview of changes introduced in the HDF5_Parallel branch

Many of the changes discussed in the following sections address the currently (as of version 3.2.1) underperforming
parallel capabilities of the CGNS library. For example, the CGNS function cgp_open, which opens a CGNS file for
processing, has substantially increasing execution time as the number of processes is increased, Fig. 1 (trunk). The
current improvement for cgp_open is substantial at 100-1000 times faster (branch) than the previous implementation
(trunk). In fact, for runs with the largest number of processes (>1024) the batch job had a time limit of 5 minutes and
not all the processes had completed cgp_open before this limit was reached. Obviously, the previous implementation
of cgp_open is a lot worse than reported in the figure.

Figure 1: Time for completion of cgp_open in write mode for the original implementation (trunk) and the current
implementation (branch), the error bars correspond to the minimum and maximum time over all the processes that
had completed before the batch job time limit was reached.

Section 2 lists changes to CGNS that could effect the end user and introduces new functions and specifications.
Fortran programmers should take notice of Section 2.2 which highlights changes introduced for better interoperability
with the C CGNS library. Section 3 gives example installation guides for GPFS and Lustre hardware. Items listed
in blue affect compatibility of older codes when using CGNS v3.2.2. Known problems are highlighted in red. The
branch can be checked out from sourceforge at,

http://svn.code.sf.net/p/cgns/code/cgns/branches/HDF5_Parallel

1



2 General behavior changes and new recommendations for parallel performance

• The flush functions should not be used. Writing and reading immediately avoids IO contention occurring when
flush is being used.

• The parallel routines are meant for parallel file systems (GPFS or Lustre).

• The default parallel input/output mode was changed from CGP_INDEPENDENT to CGP_COLLECTIVE.

• A new function was added for passing MPI info to the CGNS library.

C

int cgp_mpi_info(MPI_Info info)

Fortran

CALL cgp_mpi_info_f(comm_info, ierr)
INTEGER :: comm_info
INTEGER :: ierr

• Functions for parallel reading and writing multi-component datasets using a single call was introduced. The
new APIs use new capabilities are tentatively to be introduced in version 1.10.0 of the HDF5 library. The new
APIs pack multiple datasets into a single buffer and the underlying MPI IO completes the IO request using
just one call. The availability of the new functions in the HDF5 library is checked at compile time. The current
limitation (due to MPI) is that the size of the sum of the datasets must be less than 2GB. Example usage can
be found in benchmark_hdf5.c and benchmark_hdf5_f90.F90 in ptests.

C

int cgp_coord_multi_read_data(int fn, int B, int Z, int *C,
const cgsize_t *rmin, const cgsize_t *rmax,
void *coordsX, void *coordsY, void *coordsZ);

int cgp_coord_multi_write_data(int fn, int B, int Z, int *C,
const cgsize_t *rmin, const cgsize_t *rmax,
const void *coordsX, const void *coordsY, const void *coordsZ);

int cgp_field_multi_read_data(int fn, int B, int Z, int S, int *F,
const cgsize_t *rmin, const cgsize_t *rmax,
int nsets, ...);

/* ... nsets of variable arguments, *solution_array, corresponding to the order given by F */

int cgp_field_multi_write_data(int fn, int B, int Z, int S, int *F,
const cgsize_t *rmin, const cgsize_t *rmax,
int nsets, ...);

/* ... nsets of variable arguments, *solution_array, corresponding to the order given by F */

int cgp_array_multi_write_data(int fn, int *A, const cgsize_t *rmin, const cgsize_t *rmax,
int nsets, ...);

/* ... nsets of variable arguments, *field_array, corresponding to the order given by F */

int cgp_array_multi_read_data(int fn, int *A, const cgsize_t *rmin,const cgsize_t *rmax,
int nsets, ...);

/* ... nsets of variable arguments, *field_array, corresponding to the order given by F */

2



Fortran

CALL cgp_coord_multi_read_data_f(fn, B, Z, C, rmin, rmax, coordsX, coordsY, coordsZ, ier)
INTEGER :: fn
INTEGER :: B
INTEGER :: Z
INTEGER :: C
INTEGER(CG_SIZE_T) :: rmin
INTEGER(CG_SIZE_T) :: rmax
REAL :: coordsX, coordsY, coordsZ
INTEGER :: ier

CALL cgp_coord_multi_write_data_f(fn, B, Z, C, rmin, rmax, coordsX, coordsY, coordsZ, ier)
INTEGER :: fn
INTEGER :: B
INTEGER :: Z
INTEGER :: C
INTEGER(CG_SIZE_T) :: rmin
INTEGER(CG_SIZE_T) :: rmax
REAL :: coordsX, coordsY, coordsZ
INTEGER :: ier

CALL cgp_field_multi_write_data_f(fn, B, Z, S, F, rmin, rmax, ier, nsets, ...)
INTEGER :: fn
INTEGER :: B
INTEGER :: Z
INTEGER :: C
INTEGER(CG_SIZE_T) :: rmin
INTEGER(CG_SIZE_T) :: rmax
INTEGER :: ier
INTEGER :: nsets
... REAL, DIMENSION(*) :: field_array ! entered nsets times

CALL cgp_field_multi_read_data_f(fn, B, Z, S, F, rmin, rmax, ier, nsets, ...)
INTEGER :: fn
INTEGER :: B
INTEGER :: Z
INTEGER :: C
INTEGER(CG_SIZE_T) :: rmin
INTEGER(CG_SIZE_T) :: rmax
INTEGER :: ier
INTEGER :: nsets
... REAL, DIMENSION(*) :: field_array ! entered nsets times

CALL cgp_array_multi_write_data_f(fn, B, Z, S, F, rmin, rmax, ier, nsets, ...)
INTEGER :: fn
INTEGER :: B
INTEGER :: Z
INTEGER :: C
INTEGER(CG_SIZE_T) :: rmin
INTEGER(CG_SIZE_T) :: rmax
INTEGER :: ier
INTEGER :: nsets
... REAL, DIMENSION(*) :: data_array ! entered nsets times

3



CALL cgp_array_multi_read_data_f(fn, B, Z, S, F, rmin, rmax, ier, nsets, ...)
INTEGER :: fn
INTEGER :: B
INTEGER :: Z
INTEGER :: C
INTEGER(CG_SIZE_T) :: rmin
INTEGER(CG_SIZE_T) :: rmax
INTEGER :: ier
INTEGER :: nsets
... REAL, DIMENSION(*) :: data_array ! entered nsets times

2.1 New C changes

• A new parallel example benchmark program, benchmark_hdf5.c, was added to directory ptests.

• The cgp_*_read/write_dataset APIs now excepts non-allocated arrays, or NULL, as valid parameters for the
datasets. Additionally, the dimensional arrays, rmin and rmax, can also be NULL. If the data array is NULL
and the dimensional arrays are not NULL, then the validity of the dimensional arrays, rmin and rmax, is not
check. For collective parallel IO, this is used as a mechanism to indicated that processes with NULL API
parameters will not write any data to the file.

2.1.1 Internal library changes

1. Fixed issue with autotools putting a blank “-l” in “MPILIBS =” when compiling library using using mpi.

2. Replaced the hid_t to double (and vice-versa) utilities to_HDF_ID and to_ADF_ID from a type cast to a
function which uses memcpy for the conversion. This is need to for the upcomming release of HDF5 1.10 where
hid_t was changed from a 32 bit integer to a 64 bit integer.

2.2 New Fortran changes

All users are strongly encouraged to use a Fortran 2003 standard compliant compiler. Using a Fortran 2003 compiler
guarantees interoperability with the C APIs via the ISO_C_BINDING module. Many changes were added to the
CGNS library in order to take full advantage of the interoperability offered by the ISO_C_BINDING module.

1. Configure was changed to check if the Fortran compiler is Fortran 2003 compliant. If it is then the features of
ISO_C_BINDING will be used.

2. The predefined CGNS constant parameters data types were changed from INTEGER to ENUM, BIND(C)
for better C interoperability. The users should use the predefined constants whenever possible and not the
numerical value represented by the constants. A variable expecting an enum value returned from a Fortran
API should be declared, INTEGER(cgenum_t).

3. INCLUDE “cgslib_h” was changed in favor of using a module, USE CGNS.

(a) This allows defining a KIND type for integers instead of the current way of using the preprocessor depen-
dent cgsize_t.

4. The user should be sure to declare the arguments declared int in the C APIs as INTEGER in Fortran. The
ONLY Fortran arguments declared as type cgsize_t should be the arguments which are also declared cgsize_t
in the C APIs. This is very important when building with option –enable-64bit. The test programs were
updated in order to conform to this convention.

4



5. Assuming the rules in step 4 were followed, users should not need to use parameter CG_BUILD_64BIT since
Fortran’s cgsize_t is now guaranteed to match C’s cgsize_t.

6. Fortran programs defining CGNS data types with a default INTEGER size of 8 bytes also then need to compile
the CGNS library with the default INTEGER size of 8 bytes. This is independent of whether or not –enable-
64bit is being used. For clarification, using –enable-64bit allows for data types (i.e. those declared as cgsize_t)
to be able to store values which are too large to be stored as 4 byte integers (i.e. numbers greater than
2,147,483,647). It is not necessary, or advisable (since it waste memory), to have CGNS INTEGER types
(types declared int in C) to be 8 bytes; the variables declared as cgsize_t will automatically handle data types
that can not be stored as 4 byte integers when –enable-64bit is being used. If the CGNS library was not
compiled with a default INTEGER of 8 bytes, but the calling program was, then all integers passed to CGNS
with C type int should be declared INTEGER(C_INT).

(a) CGNS developer’s note: A new C data type, cgint_f, was introduced to be interpretable with the C type
int. In order to allow for default 8 byte integers in Fortran:

i. The C API wrappers in cg_ftoc.c were changed from cgsize_t to cgint_f everywhere the C argument
is declared as an int in C.

ii. Configure detects what size the default integer is in Fortran and finds the corresponding size in C in
order to set the correct size of cgint_f.

7. Two new benchmarking programs were introduced in directory ptests:

(a) benchmarking_hdf5_f90.F90 uses the conventional Fortran wrappers.
(b) benchmarking_hdf5_f03.F90 calls the C APIs directly, no Fortran wrappers are used.

8. A new Fortran API was added for determining the CGNS data type of a variable which is interoperable with
the C data type.

Function cg_get_type(var)
type, INTENT(IN) :: var
INTEGER(KIND(enumvar)) :: cg_get_type

An example of using the new function to automatically specify the CGNS type corresponding to the Fortran data
type is,

INTEGER, DIMENSION(1:10) :: Array_i

CALL cgp_array_write_f("ArrayI",cg_get_type(Array_i(1)),1,INT(nijk(1),cgsize_t),Ai, err)

2.3 Unfinished Fortran Features

1. Default double precision for reals in Fortran leads to a mismatch in the C APIs, which expect a float.

3 Parallel installation instructions

Two parallel files systems were investigated: GPFS (mira, Argonne National Laboratory) and Lustre (Pleiades
NASA). The following descriptions were for those systems, but the overall procedure should be similar on different
machines of the same type. Example build scripts for these systems can be found in src/SampleScripts of the CGNS
source code. They include scripts for building zlib, hdf5 (assuming the user does not already have them installed
system wide) and a script for building CGNS. All the scripts use autotools; cmake remains untested. The next
few examples assume all the needed packages are in ${HOME}/packages and all the build scripts are placed in
${HOME}/packages. This information can also be found in the README.txt in the scripts directory.

5



3.1 Building on IBM Blue Gene (GPFS)

1. Building zlib from source: Download and extract the zlib source: http://www.zlib.net/

(a) cd into the top level zlib source directory.
(b) modify and run the script: ../build_zlib

2. Building hdf5 from source

(a) From the top level of the hdf5 library, change the ${HOME}/packages to where zlib was installed in STEP
1.

(b) ../build_hdf5 –without-pthread –disable-shared –enable-parallel –enable-production \ –enable-fortran –
enable-fortran2003 \ –disable-stream-vfd –disable-direct-vfd \ –with-zlib=${HOME}/packages/zlib-1.2.8/lib
–prefix=${HOME}/packages/phdf5-trunk

where prefix is set for where the hdf5 library will get installed. There should be no need to modify the script.

3. Building cgns from source:

(a) cd into the cgns/src directory
(b) modify and run: <pathto>/build_cgns
(c) make
(d) To make the tests: cd ptests; make;make test

4. Important parameters for good performance on GPFS:

(a) The environment variable BGLOCKLESSMPIO_F_TYPE=0x47504653 should be set. For example, this
can be set in a batch job using qsub –env BGLOCKLESSMPIO_F_TYPE=0x47504653

3.2 Building on SGI (Lustre)

1. Building zlib from source: Download and extract the zlib source: http://www.zlib.net/

(a) cd into the top level zlib source directory.
(b) modify and run the script: ../build_zlib

2. Building hdf5 from source:

(a) From the top level of the hdf5 library, change the ${HOME}/packages to where zlib was installed in STEP
1.

(b) ../build_hdf5

3. Building cgns from source:

(a) cd into the cgns/src directory
(b) modify and run: <pathto>/build_cgns
(c) make
(d) To make the tests: cd ptests; make;make test

4. Important parameters for good performance:

(a) The Lustre parameters have not been fully tested.
(b) On Pleiades, lfs setstripe -c 64 -s 0 /nobackupp8/<dir>, has shown good performance.

6



Figure 2: Results for benchmark_hdf5.c on GPFS (cetus, ANL).

3.3 Parallel performance results

The following results are for the benchmark_hdf5* programs found in the ptests directory. The benchmark simulates
writing and then reading a ~33.5 million 6-node pentahedra elements mesh with ~201 million nodes. The benchmark
results from benchmark_hdf5.c show improvement in cgp_open for up to 32,768 processes, Fig. 2 over the previous
implementation. A comparison of the maximum IO bandwidth speeds for reading and writing CGNS data compared
to the practical maximum IO bandwidth on cetus (ANL) shows the extremely fast writing of the element connec-
tivity table, Fig. 3. A comparison of benchmark_hdf5_f90.F90 and benchmark_hdf5_f03.F90 also shows negligible
performance differences when using the Fortran 90 wrapper routines (benchmark_hdf5_f90.F90) and when calling
the C CGNS APIs directly (benchmark_hdf5_f03.F90), Fig. 4. Additionally, negligible difference in performance
and scaling exists when calling CGNS from Fortran and C, Fig. 5.

The benchmark results from benchmark_hdf5.c on the Lustre file system (Pleiades, NASA) is presented in Fig.
6. The system defaults for the Lustre file system were used along with a strip count of 64 and a strip size of 4
MB. Overall the Lustre file system appears to be faster at reading a writing, but the GPFS scaled better for the
benchmark.

Acknowledgments

This work was funded by NASA through the CGNS project, contract #NNL14AB41T. Additionally, the computa-
tional studies done on cetus and mira at Argonne National Laboratory used allocation time through the ExaHDF5
project, DOE contract #DE-AC02-05CH11231. Computational studies on the Lustre file system was done on Pleiades
through NASA’s High-End Computer Capabilities Project.

7



Figure 3: IO bandwidth speeds for benchmark_hdf5.c on GPFS (cetus, ANL) compared to the practical maximum
IO bandwidth speeds (shaded area).

Figure 4: Results for benchmark_hdf5_f03.F90 (shown in color) and benchmark_hdf5_f90.F90 (shown in grey) on
GPFS (cetus, ANL).

8



Figure 5: Comparison of Fortran (benchmark_hdf5_f03.F90, solid lines) and C (benchmark_hdf5.c, dashed lines) on
GPFS (cetus, ANL).

9



Figure 6: Results for benchmark_hdf5.c on Lustre file system (Pleiades, NASA).

10


	Overview of changes introduced in the HDF5_Parallel branch
	General behavior changes and new recommendations for parallel performance
	New C changes
	Internal library changes

	New Fortran changes
	Unfinished Fortran Features

	Parallel installation instructions
	Building on IBM Blue Gene (GPFS)
	Building on SGI (Lustre)
	Parallel performance results


