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1
The Almost

Crystallographic
Groups Package

A group is called almost crystallographic if it is a finitely generated nilpotent-by-finite group without non-trivial
finite normal subgroups. An important special case of almost crystallographic groups are the almost Bieberbach
groups: these are almost crystallographic and torsion free.

By its definition, an almost crystallographic group G has a finitely generated nilpotent normal subgroup N of finite
index. Clearly, N is polycyclic and thus has a polycyclic series. The number of infinite cyclic factors in such a series
for N is an invariant of G: the Hirsch length of G.

For each almost crystallographic group of Hirsch length 3 and 4 there exists a representation as a rational matrix group
in dimension 4 or 5, respectively. These representations can be considered as affine representations of dimension 3 or
4. Via these representations, the almost crystallographic groups act (properly discontinuously) on R3 or R4. That is
one reason to define the dimension of an almost crystallographic group as its Hirsch length.

The 3-dimensional and a part of the 4-dimensional almost crystallographic groups have been classified by K. Dekimpe
in [Dek96]. This classification includes all almost Bieberbach groups in dimension 3 and 4. It is the first central aim
of this package to give access to the resulting library of groups. The groups in this electronic catalog are available
in two different representations: as rational matrix groups and as polycyclically presented groups. While the first
representation is the more natural one, the latter description facilitates effective computations with the considered
groups using the methods of the Polycyclic package.

The second aim of this package is to introduce a variety of algorithms for computations with polycyclically presented
almost crystallographic groups. These algorithms supplement the methods available in the Polycyclic package and
give access to some methods which are interesting specifically for almost crystallographic groups. In particular, we
present methods to compute Betti numbers and to construct or check the existence of certain extensions of almost
crystallographic groups. We note that these methods have been applied in [DE01b] and [DE01a] for computations
with almost crystallographic groups.

Finally, we remark that almost crystallographic groups can be seen as natural generalizations of crystallographic
groups. A library of crystallographic groups and algorithms to compute with crystallographic groups are available in
the GAP packages cryst, carat and crystcat.

1.1 More about almost crystallographic groups

Almost crystallographic groups were first discussed in the theory of actions on Lie groups. We recall the original
definition here briefly and we refer to [Aus60], [Dek96] and [Lee88] for more details.

Let L be a connected and simply connected nilpotent Lie group. For example, the 3-dimensional Heisenberg group,
consisting of all upper unitriangular 3× 3–matrices with real entries is of this type. Then LoAut(L) acts affinely (on
the left) on L via

∀l, l′ ∈ L,∀α ∈ Aut(L) : (l,α)l′ = l α(l′)·
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Let C be a maximal compact subgroup of Aut(L). Then a subgroup G of LoC is said to be an almost crystallographic
group if and only if the action of G on L, induced by the action of L o Aut(L), is properly discontinuous and the
quotient space G\L is compact. One recovers the situation of the ordinary crystallographic groups by taking L = Rn,
for some n, and C = O(n), the orthogonal group.

More generally, we say that an abstract group is an almost crystallographic group if it can be realized as a genuine
almost crystallographic subgroup of some LoC. In the following theorem we outline some algebraic characterizations
of almost crystallographic groups; see Theorem 3.1.3 of [Dek96]. Recall that the Fitting subgroup Fitt(G) of a
polycyclic-by-finite group G is its unique maximal normal nilpotent subgroup.

Theorem. The following are equivalent for a polycyclic-by-finite group G:

(1) G is an almost crystallographic group.

(2) Fitt(G) is torsion free and of finite index in G.

(3) G contains a torsion free nilpotent normal subgroup N of finite index in G with CG(N) torsion free.

(4) G has a nilpotent subgroup of finite index and there are no non-trivial finite normal subgroups in G.

In particular, if G is almost crystallographic, then G/Fitt(G) is finite. This factor is called the holonomy group of G.

The dimension of an almost crystallographic group equals the dimension of the Lie group L above which coincides
also with the Hirsch length of the polycyclic-by-finite group. This library therefore contains families of virtually
nilpotent groups of Hirsch length 3 and 4.



2
Algorithms for almost

crystallographic
groups

This chapter presents a variety of algorithms for almost crystallographic groups. In most cases, they assume a poly-
cyclically presented group as input; in particular, the input groups must be polycyclic in this case. The methods
described here supplement the methods of the Polycyclic package for polycyclically presented groups. Many of the
functions in this chapter are based on methods of the Polycyclic package and thus this package must be installed to use
the functions introduced here. We refer to the Polycyclic package for further information on polycyclic presentations.

2.1 Properties of almost crystallographic groups
1 I IsAlmostCrystallographic( G ) P

This function checks if a polycyclically presented group G is almost crystallographic; that is, it checks if G is nilpotent-
by-finite and has no non-trivial finite normal subgroup.

2 I IsAlmostBieberbachGroup( G ) P

This function checks if a polycyclically presented group G is almost Bieberbach; that is, it checks if G is nilpotent-
by-finite and torsion free.

2.2 Betti numbers

Let G be a polycyclically presented and torsion free group of Hirsch length n. Then we can compute the Betti numbers
βi(G) for i ∈ {0, 1, 2, n− 2, n− 1, n}. If n ≤ 6, then we can compute all Betti numbers βi(G) for 0 ≤ i ≤ 6 of G. We
introduce the following functions for this purpose and we refer to [Bro82] for the details on the orientation module
and the Betti numbers.

1 I OrientationModule( G ) F

This function determines the orientation module of the polycyclically presented group G; that is, it returns a list of
matrices m1, . . . ,mn ≤ GL(1,Z) which are the images of the ’Igs(G)’ in their action on the orientation module.

2 I BettiNumber( G, m ) F

This function returns the mth Betti number of the polycyclically presented torsion free group G if m ∈ {0, 1, 2, n −
2, n− 1, n}, where n is the Hirsch length of G.

3 I BettiNumbers( G ) A

This function returns the Betti number of the polycyclically presented torsion free group G if the Hirsch length of G
is smaller than 7.
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2.3 Determination of certain extensions

Let G be a polycyclically presented almost crystallographic group. We want to check the existence of certain exten-
sions of G.

First, it is well-known that the equivalence classes of extensions of G correspond to the second cohomology group
of G. This cohomology group can be computed using the methods of the Polycyclic package for any explicitly given
module of G. Further, we can construct a polycyclic presentation for each cocycle of the second cohomology group.
We give an example for such a computation below.

However, we may be interested in certain extensions only; for example, the torsion free extensions are often of particu-
lar interest. If the second cohomology group is finite, then we can compute a polycyclic presentation for each element
of this group and check the resulting group for torsion freeness. But if the second cohomology group is infinite, then
this approach is not available. Hence we introduce the following special method to cover this and related applications.

1 I HasExtensionOfType( G, torsionfree, minimalcentre ) F

Suppose that G is a polycyclically presented almost crystallographic group with Fitting subgroup N. This function
checks if there is a G-module M ∼= Z which is centralized by N such that there exists a torsion free extension of M
by G (if the flag torsionfree is true) or an extension E with Z(Fitt(E)) = M (if the flag minimalcentre is true) or an
extension which satisfies both conditions (if both flags are true).

We note that the existence of such extensions is of interest in the determination of extensions which are almost
Bieberbach groups. We refer to [DE01b] for a more detailed account of this application and for further results of a
similar nature.
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The catalog of almost

crystallographic
groups

This chapter introduces the access functions to the catalog of 3- and 4-dimensional crystallographic groups. This
catalog is an electronic version of the classification obtained in [Dek96].

3.1 Rational matrix groups

The following three main functions are available to access the library of almost crystallographic groups as rational
matrix groups.

1 I AlmostCrystallographicGroup( dim, type, parameters )
I AlmostCrystallographicDim3( type, parameters )
I AlmostCrystallographicDim4( type, parameters )

dim is the dimension of the required group. Thus dim must be either 3 or 4. The inputs type and parameters are used
to define the desired group as described in [Dek96]. We outline the possible choices for type and parameters here
briefly. A more extended description is given later in Section 1.1 or can be obtained from [Dek96].

type specifies the type of the required group. There are 17 types in dimension 3 and 95 types in dimension 4. The
input type can either be an integer defining the position of the desired type among all types; that is, in this case type is
a number in [1..17] in dimension 3 or a number in [1..95] in dimension 4. Alternatively, type can be a string defining
the desired type. In dimension 3 the possible strings are "01", "02", . . ., "17". In dimension 4 the possible strings
are listed in the list ACDim4Types and thus can be accessed from GAP.

parameters is a list of integers. Its length depends on the type of the chosen group. The lists ACDim3Param and
ACDim4Param contain at position i the length of the parameter list for the type number i. Every list of integers of this
length is a valid parameter input. Alternatively, one can input false instead of a parameter list. Then GAP will chose
a random parameter list of suitable length.

gap> G := AlmostCrystallographicGroup( 4, 50, [ 1, -4, 1, 2 ] );

<matrix group of size infinity with 5 generators>

gap> DimensionOfMatrixGroup( G );

5

gap> FieldOfMatrixGroup( G );

Rationals

gap> GeneratorsOfGroup( G );

[ [ [ 1, 0, -1/2, 0, 0 ], [ 0, 1, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ],

[ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ],

[ [ 1, 1/2, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 1 ],

[ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ],

[ 0, 0, 0, 1, 1 ], [ 0, 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 0, 1 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ],
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[ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ],

[ [ 1, -4, 1, 0, 1/2 ], [ 0, 0, -1, 0, 0 ], [ 0, 1, 0, 0, 0 ],

[ 0, 0, 0, 1, 1/4 ], [ 0, 0, 0, 0, 1 ] ] ]

gap> G.1;

[ [ 1, 0, -1/2, 0, 0 ], [ 0, 1, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ],

[ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ]

gap> ACDim4Types[50];

"076"

gap> ACDim4Param[50];

4

3.2 Polycyclically presented groups

All the almost crystallographic groups considered in this package are polycyclic. Hence they have a polycyclic presen-
tation and this can be used to facilitate efficient computations with the groups. To obtain the polycyclic presentation
of an almost crystallographic group we supply the following functions. Note that the share package Polycyclic must
be installed to use these functions.

1 I AlmostCrystallographicPcpGroup( dim, type, parameters )
I AlmostCrystallographicPcpDim3( type, parameters )
I AlmostCrystallographicPcpDim4( type, parameters )

The input is the same as for the corresponding matrix group functions. The output is a pcp group isomorphic to the cor-
responding matrix group. An explicit isomorphism from an almost crystallographic matrix group to the corresponding
pcp group can be obtained by the following function.

2 I IsomorphismPcpGroup( G )

We can use the polycyclic presentations of almost crystallographic groups to exhibit structure information on these
groups. For example, we can determine their Fitting subgroup and ask group-theoretic questions about this nilpotent
group. The factor G/Fit(G) of an almost crystallographic group G is called holonomy group. We provide access to
this factor of a pcp group via the following functions. Let G be an almost crystallographic pcp group.

3 I HolonomyGroup( G )
I NaturalHomomorphismOnHolonomyGroup( G )

The following example shows applications of these functions.

gap> G := AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );

Pcp-group with orders [ 4, 0, 0, 0, 0 ]

gap> Cgs(G);

[ g1, g2, g3, g4, g5 ]

gap> F := FittingSubgroup( G );

Pcp-group with orders [ 0, 0, 0, 0 ]

gap> Centre(F);

Pcp-group with orders [ 0, 0 ]

gap> LowerCentralSeries(F);

[ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0 ],

Pcp-group with orders [ ] ]

gap> UpperCentralSeries(F);

[ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0, 0 ],

Pcp-group with orders [ ] ]

gap> MinimalGeneratingSet(F);

[ g2, g3, g4 ]



Section 3. More about the type and the defining parameters 9

gap> H := HolonomyGroup( G );

Pcp-group with orders [ 4 ]

gap> hom := NaturalHomomorphismOnHolonomyGroup( G );

[ g1, g2, g3, g4, g5 ] -> [ g1, identity, identity, identity, identity ]

gap> U := Subgroup( H, [Pcp(H)[1]^2] );

Pcp-group with orders [ 2 ]

gap> PreImage( hom, U );

Pcp-group with orders [ 2, 0, 0, 0, 0 ]

3.3 More about the type and the defining parameters

Each group from this library knows that it is almost crystallographic and, additionally, it knows its type and defining
parameters.

1 I AlmostCrystallographicInfo( G )

This attribute is set for groups from the library only. It is not possible at current to determine the type and the defining
parameters for an arbitrary almost crystallographic groups which is not defined by the library access functions.

gap> G := AlmostCrystallographicGroup( 4, 70, false );

<matrix group of size infinity with 5 generators>

gap> IsAlmostCrystallographic(G);

true

gap> AlmostCrystallographicInfo(G);

rec( dim := 4, type := 70, param := [ 1, -4, 1, 2, -3 ] )

gap> G := AlmostCrystallographicPcpGroup( 4, 70, false );

Pcp-group with orders [ 6, 0, 0, 0, 0 ]

gap> IsAlmostCrystallographic(G);

true

gap> AlmostCrystallographicInfo(G);

rec( dim := 4, type := 70, param := [ -3, 2, 5, 1, 0 ] )

We consider the types of almost crystallographic groups in more detail. The almost crystallographic groups in dimen-
sions 3 and 4 fall into three families

(1) 3-dimensional almost crystallographic groups.

(2) 4-dimensional almost crystallographic groups with a Fitting subgroup of class 2.

(3) 4-dimensional almost crystallographic groups with a Fitting subgroup of class 3.

These families are split up further into subfamilies in [Dek96] and to each subfamily is assigned a type; that is, a string
which is used to identify the subfamily. As mentioned above, for the 3-dimensional almost crystallographic groups
the type is a string representing the numbers from 1 to 17, i.e. the available types are "01", "02", . . ., "17".

For the 4-dimensional almost crystallographic groups with a Fitting subgroup of class 2 the type is a string of 3 or
4 characters. In general, a string of 3 characters representing the number of the table entry in [Dek96] is used. So
possible types are "001", "002", . . .. The reader is warned however that not all possible numbers are used, e.g.
there are no groups of type "016". Also, the types do not appear in their natural order in [Dek96]. Moreover, for
certain numbers there is more than one family of groups listed in [Dek96]. For example, the 3 families of groups
corresponding to number 19 on pages 179-180 of [Dek96] have types "019", "019b" and "019c" (the order is the
one given in [Dek96]).

For the last category of groups, the 4-dimensional almost crystallographic groups with a Fitting subgroup of class 3,
the type is a string of 2 or 3 characters, where the first character is always the letter "B". This "B" is followed by the
number of the table entry as found in [Dek96], eventually followed by a "b" or "c" as in the previous case.
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For each type of almost crystallographic group contained in the library there exists a function taking a parameter
list as input and returning the desired matrix or pcp group. These functions can be accessed from GAP using the
lists ACDim3Funcs, ACDim4Funcs, ACPcpDim3Funcs and ACPcpDim4Funcs which consist of the corresponding
functions.

Although we include these direct access functions here for completeness, we note that the user should in general use
the higher-level functions introduced above to obtain almost crystallographic groups from the library. In particular,
these low-level access functions return matrix or pcp groups, but the almost crystallographic info flags will not be
attached to them.

gap> ACDim3Funcs[15];

function( k1, k2, k3, k4 ) ... end

gap> ACDim3Funcs[15](1,1,1,1);

<matrix group with 5 generators>

gap> ACPcpDim3Funcs[1](1);

Pcp-group with orders [ 0, 0, 0 ]

3.4 The electronic versus the printed library

The package aclib can be considered as the electronic version of Chapter 7 of [Dek96]. In this section we outline
the relationship between the library presented in this manual and the printed version in [Dek96]. First we consider an
example. At page 175 of [Dek96], we find the following groups in the table starting with entry “13”.

13. Q = P2/c
E : 〈a, b, c, d,α, β | [b, a] = 1 [d, a] = 1 〉

[c, a] = d2k1 [d, b] = 1
[c, b] = 1 [d, c] = 1
αa = a−1αdk2 α2 = dk3

αb = bα αd = dα

αc = c−1αd−2k6

βa = a−1βdk1+k2 β 2 = dk5

βb = b−1βdk4 βd = dβ

βc = c−1βd−2k6 αβ = cβαdk6

λ (α) =


1 k1

2 + k2 0 −2k6
k3
2 + k6

2
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 1

2
0 0 0 0 1

 λ (β ) =


1 k1 + k2 k4 −2k6

k5
2

0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1


H2(Q,Z) = Z⊕ (Z2)

4 = Z6/A,

A = {(k1, . . . , k6)|k1 = 0, k2, . . . , k5 ∈ 2Z, k6 ∈ Z}

AB-groups:

∀k > 0, k ≡ 0 mod 2, (k, 0, 1, 0, 1, 0)

The number “13” at the beginning of this entry is the type of the almost crystallographic group in this library. This
family of groups with type 13 depends on 6 parameters k1, k2, . . . , k6 and these are the parameters list in this library.
The rational matrix representation in GAP corresponds exactly to the printed version in [Dek96] where it is named λ .
In the example below, we consider the group with parameters (k1, k2, k3, k4, k5, k6) = (8, 0, 1, 0, 1, 0).
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gap> G:=AlmostCrystallographicDim4("013",[8,0,1,0,1,0]);

<matrix group with 6 generators>

gap> G.5;

[ [ 1, 4, 0, 0, 1/2 ], [ 0, -1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ],

[ 0, 0, 0, -1, 1/2 ], [ 0, 0, 0, 0, 1 ] ]

gap> G.6;

[ [ 1, 8, 0, 0, 1/2 ], [ 0, -1, 0, 0, 0 ], [ 0, 0, -1, 0, 0 ],

[ 0, 0, 0, -1, 0 ], [ 0, 0, 0, 0, 1 ] ]

For a 4-dimensional almost crystallographic group the matrix group is built up such that {a, b, c, d,α, β , γ} as de-
scribed in [Dek96] forms the defining generating set of G. For certain types the elements α , β or γ may not be
present. Similarly, for a 3-dimensional group we have the generating set {a, b, c,α, β} and α and β may be absent.

To obtain a polycyclic generating sequence from the defining generators of the matrix group we have to order the
elements in the generating set suitably. For this purpose we take the subsequence of (γ, β ,α, a, b, c, d) of those gener-
ators which are present in the defining generating set of the matrix group. This new ordering of the generators is then
used to define a polycyclic presentation of the given almost crystallographic group.
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Example
computations

with almost
crystallographic

groups

4.1 Example computations I

Using the functions available for pcp groups in the share package polycyclic it is now easy to redo some of the
calculations of [Dek96]. As a first example we check whether the groups indicated as torsion free in [Dek96] are also
determined as torsion free ones by GAP. In [Dek96] these almost Bieberbach groups are listed as “AB-groups”. So
for type “013” these are the groups with parameters (k, 0, 1, 0, 1, 0) where k is an even integer. Let’s look at some
examples in GAP:

gap> G:=AlmostCrystallographicPcpDim4("013",[8,0,1,0,1,0]);

Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]

gap> IsTorsionFree(G);

true

gap> G:=AlmostCrystallographicPcpDim4("013",[9,0,1,0,1,0]);

Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]

gap> IsTorsionFree(G);

false

Further, there is also some cohomology information in the tables of [Dek96]. In fact, the groups in this library were
obtained as extensions E of the form

1→ Z→ E → Q→ 1

where, in the 4-dimensional case Q = E/〈d〉. The cohomology information for the particular example above shows
that the groups determined by a parameter set (k1, k2, k3, k4, k4, k6) are equivalent as extensions to the groups deter-
mined by the parameters (k1, k2 mod 2, k3 mod 2, k4 mod 2, k5 mod 2, 0). This is also visible in finding torsion:
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gap> G:=AlmostCrystallographicPcpDim4("013",[10,0,2,0,1,0]);

Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]

gap> IsTorsionFree(G);

false

gap> G:=AlmostCrystallographicPcpDim4("013",[10,0,3,0,1,9]);

Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]

gap> IsTorsionFree(G);

true

4.2 Example computations II

The computation of cohomology groups played an important role in the classification of the almost Bieberbach groups
in [Dek96]. Using GAP, it is now possible to check these computations. As an example we consider the 4-dimensional
almost crystallographic groups of type 85 on page 202 of [Dek96]. This group E has 6 generators. In the table, one
also finds the information

H2(Q,Z) = Z⊕ (Z2)
2 ⊕ Z4

for Q = E/〈d〉 as above. Moreover, the Q–module Z is in fact the group 〈d〉, where the Q-action comes from
conjugation inside E. In the case of groups of type 85, Z is a trivial Q-module. The following example demonstrates
how to (re)compute this two-cohomology group H2(Q,Z).

gap> G:=AlmostCrystallographicPcpGroup(4, "085", false);

Pcp group with orders [ 2, 4, 0, 0, 0, 0 ]

gap> GroupGeneratedByd:=Subgroup(G, [G.6] );

Pcp group with orders [ 0 ]

gap> Q:=G/GroupGeneratedByd;

Pcp group with orders [ 2, 4, 0, 0, 0 ]

gap> action:=List( Pcp(Q), x -> [[1]] );

[ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ]

gap> C:=CRRecordByMats( Q, action);;

gap> TwoCohomologyCR( C ).factor.rels;

[ 2, 2, 4, 0 ]

This last line gives us the abelian invariants of the second cohomology group H2(Q,Z). So we should read this line as

H2(Q,Z) = Z2 ⊕ Z2 ⊕ Z4 ⊕ Z

which indeed coincides with the information in [Dek96].

4.3 Example computations III

As another application of the capabilities of the combination of aclib and polycyclic we check some computations
of [DM01].

Section 5 of the paper [DM01] is completely devoted to an example of the computation of the P-localization of a
virtually nilpotent group, where P is a set of primes. Although it is not our intention to develop the theory of P-
localization of groups at this place, let us summarize some of the main results concerning this topic here.

For a set of primes P, we say that n ∈ P if and only if n is a product of primes in P. A group G is said to be P-local
if and only if the map µn : G → G : g 7→ gn is bijective for all n ∈ P′, where P′ is the set of all primes not in P.
The P-localization of a group G, is a P-local group GP together with a morphism α : G → GP which satisfy the
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following universal property: For each P-local group L and any morphism ϕ : G→ L, there exists a unique morphism
ψ : GP → L, such that ψ ◦ α = ϕ .

This concept of localization is well developed for finite groups and for nilpotent groups. For a finite group G, the P-
localization is the largest quotient of G, having no elements with an order belonging to P′ (the morphism α , mentioned
above is the natural projection).

In [DM01] a contribution is made towards the localization of virtually nilpotent groups. The theory developed in
the paper is then illustrated in the last section of the paper by means of the computation of the P-localization of
an almost crystallographic group. For their example the authors have chosen an almost crystallographic group G
of dimension 3 and type 17. For the set of parameters (k1, k2, k3, k4) they have considered all cases of the form
(k1, k2, k3, k4) = (2, 0, 0, k4).

Here we will check their computations in two cases k4 = 0 and k4 = 1 using the set of primes P = {2}. The
holonomy group of these almost crystallographic groups G is the dihedral group D6 of order 12. Thus there is a short
exact sequence of the form

1→ Fitt(G)→ G→ D6 → 1·

As a first step in their computation, Descheemaeker and Malfait determine the group IP′D6, which is the unique
subgroup of order 3 in D6. One of the main objects in [DM01] is the group K = p−1(IP′D6), where p is the natural
projection of G onto its holonomy group. It is known that the P-localization of G coincides with the P-localization
of G/γ3(K), where γ3(K) is the third term in the lower central series of K. As G/γ3(K) is finite in this example, we
exactly know what this P-localization is. Let us now show, how GAP can be used to compute this P-localization in
two cases:

First case: The parameters are (k1, k2, k3, k4) = (2, 0, 0, 0)

gap> G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,0] );

Pcp group with orders [ 2, 6, 0, 0, 0 ]

gap> projection := NaturalHomomorphismOnHolonomyGroup( G );

[ g1, g2, g3, g4, g5 ] -> [ g1, g2, identity, identity, identity ]

gap> F := HolonomyGroup( G );

Pcp group with orders [ 2, 6 ]

gap> IPprimeD6 := Subgroup( F , [F.2^2] );

Pcp group with orders [ 3 ]

gap> K := PreImage( projection, IPprimeD6 );

Pcp group with orders [ 3, 0, 0, 0 ]

gap> PrintPcpPresentation( K );

pcp presentation on generators [ g2^2, g3, g4, g5 ]

g2^2 ^ 3 = identity

g3 ^ g2^2 = g3^-1*g4^-1

g3 ^ g2^2^-1 = g4*g5^-2

g4 ^ g2^2 = g3*g5^2

g4 ^ g2^2^-1 = g3^-1*g4^-1*g5^2

g4 ^ g3 = g4*g5^2

g4 ^ g3^-1 = g4*g5^-2

gap> Gamma3K := CommutatorSubgroup( K, CommutatorSubgroup( K, K ));

Pcp group with orders [ 0, 0, 0 ]

gap> quotient := G/Gamma3K;

Pcp group with orders [ 2, 6, 3, 3, 2 ]

gap> S := SylowSubgroup( quotient, 3);

Pcp group with orders [ 3, 3, 3 ]

gap> N := NormalClosure( quotient, S);

Pcp group with orders [ 3, 3, 3 ]

gap> localization := quotient/N;
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Pcp group with orders [ 2, 2, 2 ]

gap> PrintPcpPresentation( localization );

pcp presentation on generators [ g1, g2, g3 ]

g1 ^ 2 = identity

g2 ^ 2 = identity

g3 ^ 2 = identity

This shows that GP ∼= Z3
2.

Second case: The parameters are (k1, k2, k3, k4) = (2, 0, 0, 1)

gap> G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,1]);;

gap> projection := NaturalHomomorphismOnHolonomyGroup( G );;

gap> F := HolonomyGroup( G );;

gap> IPprimeD6 := Subgroup( F , [F.2^2] );;

gap> K := PreImage( projection, IPprimeD6 );;

gap> Gamma3K := CommutatorSubgroup( K, CommutatorSubgroup( K, K ));;

gap> quotient := G/Gamma3K;;

gap> S := SylowSubgroup( quotient, 3);;

gap> N := NormalClosure( quotient, S);;

gap> localization := quotient/N;

Pcp group with orders [ 2, 2, 2 ]

gap> PrintPcpPresentation( localization );

pcp presentation on generators [ g1, g2, g3 ]

g1 ^ 2 = identity

g2 ^ 2 = g3

g3 ^ 2 = identity

g2 ^ g1 = g2*g3

g2 ^ g1^-1 = g2*g3

In this case, we see that GP = D4.

The reader can check that these results coincide with those obtained in [DM01]. Note also that we used a somewhat
different scheme to compute this localization than the one used in [DM01]. We invite the reader to check the same
computations, tracing exactly the steps made in [DM01].
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